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It is important that mathematics is taught with a sense of its history. It is not as though one needs to study the history of 
mathematics as a separate subject. Rather, it is appropriate to bring in problems and contexts from history into the study 
of mathematical topics wherever feasible and relevant. This can add immensely to the appreciation and enjoyment of 
the subject. This article is based on a talk given on 11 November, 2022 for the “Listening to Learn” Webinar series of the 
National Council Educational Research and Training (NCERT). In the talk, we dealt with four problems, each of which has 
a connection with some topic from ancient Indian mathematics: (a) Magic squares of orders 3 and 4; (b) The mathematics 
of compositions and prosody, and the Fibonacci numbers, also known as the Virahanka-Gopala-Hemachandra numbers; 
(c) Aryabhata’s kuttaka (‘pulverizer’) algorithm and the jugs-and-water-cups problem; (d) Brahmagupta triangles. The 
focus in each case was on the mathematics of the problem and not on the history; but we also touched upon the historical 
aspect. We have followed the same style in this article. There is great beauty and richness in studying such problems. It 
would have great value if high school mathematics were taught with glimpses of such gems.
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Magic Squares of Order 3

Magic squares have been known since ancient 
times and continue to be a source of great 
pleasure.

We begin by talking about magic squares 
of order 3. To start, we pose the following 
question: 

In a magic square using the numbers 1, 2, 3, 
..., 8, 9, what number must occupy the central 
square?

The wording of the question seems to suggest 
that there is only one possible answer. This 
is so. Here is an engaging and eye-opening 
proof of this claim found ‘live’ during a math 
club session with middle school students. 

A Surprising Solution

Since 1+2+3+ ... +9 = 45, the magic sum is 
45/3 = 15. Let be the central number; then  is 
one of the numbers . Figure 1 shows what the 
configuration looks like:

m

Fig. 1: Finding the central number of a third order 
Magic Square.

We now consider the different possibilities: 

• Suppose m = 9. Then in the ring around 
the central cell, we must find the 
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number 8 somewhere. But 9 + 8 = 
17 > 15 is already too large; the third 
number in the line corresponding to 9 
and 8 would have to be -2 which is not 
permitted! Hence, this configuration 
cannot be successfully completed 
into a magic square. Therefore, the 
possibility m = 9 is ruled out. 

• The same reasoning works for the 
possibilities m  = 8, 7, 6. It follows that 
m ≠ 9, 8, 7, 6. 

• We now consider the remaining 
possibilities.

• Suppose m  = 1. Then in the ring 
around the central cell, we must find 
the number 2 somewhere. But as 1 
+ 2 = 3, the third number in the line 
corresponding to 1 and 2 would have 
to be 12, which is too large! Hence, this 
configuration cannot be successfully 
completed into a magic square. 
Therefore, the possibility  is ruled out.

• The same reasoning works for the 
possibilities m  = 2, 3, 4. It follows that 
m ≠ 1, 2, 3, 4.

• This means that m ≠ 9, 8, 7, 6 and m ≠ 
1, 2, 3, 4.

• There is just one possibility left for the 
number in the central square! So, we 
have m = 5. 

Armed with the knowledge that the magic 
sum is  and the central number is , it is easy 
to construct the magic square:

8 1 6

3 5 7

4 9 2

Fig.2: The completed 3rd order Magic Square.

Another way of finding the central number

We now show a very different approach here 
to the same problem. It is worthy of close 
study.

Draw lines through the central square to 
cover all the squares (see Figure 3). Note 
that 4 such lines are needed. The sum of the 
numbers on each line is 15 (this being the 
magic sum of the square). Therefore, the total 
of these four sums is 4 × 15 = 60.

         

Fig.3: Another approach for finding the central 
number.

Now, observe that the central number is 
covered 4 times, as it lies on each line; the 
other numbers are covered exactly once each. 
This implies that

60 = (1 +2 + 3 + ... + 9) + 3m = 45 + 3m

giving m = 5,  we have obtained the same 
answer as earlier.

Pedagogic points to be kept in mind by the 
teacher

1. It is not possible to have a magic 
square of order two. Students should 
be invited to demonstrate this fact.

2. It is important that students get to see 
both the above proofs as they illustrate 
different kinds of reasoning and 
different approaches to proof:

          a.  The first of these is proof by 
exhaustion (also called brute force 
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enumeration). In some settings 
this may well be the only approach 
available.

           b.  The second is more sophisticated as 
it depends on the use of algebra and 
equations, which have first to be set 
up. 

3. There are four different arithmetic 
progressions in the  magic square. This 
may provide a nice entry point into the 
study of APs. The topic enters in a very 
natural manner. 

4. We noted above, after showing that the 
central number is 5, that the remaining 
cells are easy to fill in. At various 
points we are confronted with choices, 
but the different choices only lead 
to different orientations of the same 
basic design. This means that there is 
‘essentially just one’ magic square of 
order three using the numbers from 1 
to 9. The use of the phrase ‘essentially 
just one’ immediately points to the 
idea of symmetry. Therefore, playing 
with this most basic of magic squares 
introduces us to ideas of symmetry in a 
very natural manner. 

5. Is it possible to use the basic design 
of the magic square of order three 
to make a magic square of order six, 
using the numbers from 1 to 36? This 
exploration holds great promise!

6. Is it possible to play around with the 
definition of a magic square and define 

the notion of a magic rectangle? This 
notion would be slightly more general 
than that of a magic square.

Magic Squares of Order 4

Next, we study magic squares of orders 4. 
Here the problem is that of arranging the 
numbers from 1 to 16 in a 4 × 4 square array 
so that the four rows, the four columns, and 
the two main diagonals, all have the same 
magic sum. Since the sum of the numbers 
from 1 to 16 is 16×17

2  = 8 × 17 = 156, it follows 
that the magic sum of such a square is 2 × 17 
= 34.

Unlike the situation for the 3 × 3 magic 
square, where using the numbers 1, 2, ..., 8, 
9 there is essentially just one design for the 
magic square, here we find many different 
designs possible. Indeed, it is a non-trivial 
problem to find the number of different 
designs.

We now look at a pair of fourth order magic 
squares associated with two famous historical 
artefacts (Figure 4).

Let us focus our attention on the magic 
squares in these two artefacts (Figure 5).

In Figure 6 we see the two magic squares 
displayed in plain text form.

Now, it turns out that all fourth order magic 
squares share a certain non-obvious and non-
trivial property illustrated in Figure 7. But it is 
quite tricky to prove!
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Albrecht Durer’s Melencolia Parshvanatha temple, Khajuraho

Fig. 4: Albrecht Dürer’s Melencolia and Parshvanatha temple, Khajuraho. Source: [1]

Dürer’s magic square Khajuraho magic square

Fig. 5: Close ups of the magic squares. Source: [1]
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Fig. 6: The two magic squares shown in plain text.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

a b

c d

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Fig. 8: The ‘broken diagonals’ add up to the 
magic sum.

Fig. 7:  For a 4 × 4 magic square, if a, b, c, d are as 
shown, then a + b = c + d. Moreover, this is true for 

each pair of symmetrically placed rows, columns, and 
diagonals!

Do these two fourth order magic squares 
have the property pointed out in Figure 7? Yes, 
they do! 

For example, in Dürer’s magic square we 
have:

16 + 13 = 15 + 14
5 + 9 = 13 + 1
5 + 8 = 6 + 7

6 + 11 = 16 + 1

And in the Khajuraho magic square we have:
7 + 14 = 6 + 15
2 + 16 = 14 + 4
2 + 11 = 3 + 10

3 + 8 = 7 + 4

But the Khajuraho magic square has 
additional properties — it is truly magical! We 
focus on one set of such properties: the pan-
diagonal nature of the square. We illustrate 
the meaning of this in the displays shown 
below. Both the displays show the Khajuraho 
magic square, but with different numbers 
highlighted. In both cases, the highlighted 
numbers form a “broken diagonal’” — i.e., a 
diagonal with a ‘wraparound’ effect.

4_Shailesh shirali.indd   314_Shailesh shirali.indd   31 24-Jun-24   2:56:28 PM24-Jun-24   2:56:28 PM



School Science   Quarterly Journal  June–September 2023

32 

Next, note the properties of the 2 × 2 sub-
squares. For example, at the top left, we have 
a 2 × 2 sub-square with entries 7, 12, 13, 2:; 
the sum of these numbers is 34 which is the 
magic sum of the square. (See Figure 9.) This 
property holds for all the 2 × 2 sub-squares!

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Fig. 9: The entries in each 2×2 sub-square add up to 
the magic sum.

Similarly, note the  sub-squares. We find that 
for every such sub-square, the sum of the 
numbers at the corners of the square is half 
the magic sum of the square. (See Figure 10.)

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Fig. 10: The corner entries in each 3 × 3 sub-square 
add up to half the magic sum.

For example, at the top left we have a 3 × 3 
sub-square with corner entries 7, 1, 10, 16; 
observe the equalities 7 + 10 = 17 = 1 + 6. This 
property holds for every single  sub-square!

The Khajuraho magic square is truly magical!

Who is the discoverer of this remarkable 
square? It is the mathematician Narayana 
Pandit of the 14th century. We list below some 
of his pioneering work on magic squares.

• His text Ganita Kaumudi describes 
how to construct magic squares of 
different orders. It also describes how 
to construct all possible pan-diagonal 
magic squares of order four. He proves 
that the total number of possible pan-
diagonal magic squares of order four 
is 16 × 24 = 384. This is a non-trivial 
result! He also shows how to construct 
shapes such as circles, rectangles, and 
hexagons with similar properties.

• Very remarkably, he states that 
the purpose of studying this topic 
is “…to destroy the egos of bad 
mathematicians, and for the pleasure 
of good mathematicians.”

An interesting insight comes when we realise 
that in medieval times, magic squares were 
truly regarded as magical. For example, 
in Narayana Pandit’s text he states that a 
magic square with sum 20 is useful in cases 
of poisoning; a magic square with sum 28 
is useful when one’s paddy field is attacked 
by insects; and a magic square with sum 84 
is useful to quieten children when they are 
crying.

Another insight into the nature of the 
Indian mind comes when we observe that 
combinatorial designs were of great interest 
in ancient India. The ancient Greeks, in 
contrast, were much more interested in pure 
geometry. (A common area of interest in both 
cultures was number theory).
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In terms of pedagogy, the study of pan-
diagonal magic squares holds the following 
significance:

It yields an entry point into the study of 
symmetry of different kinds.

It demonstrates that “trial-and-error” and 
experimentation are essential parts of 
mathematics.

The wraparound property of a pan-diagonal 
magic square yields a nice introduction to the 
study of an object like a torus.

The Virahanka-Gopala-
Hemachandra-Fibonacci Sequence

The Fibonacci sequence is generally defined 
using an arithmetic rule: the specification that 
each number in the sequence after the first 
two is the sum of the previous two numbers. 
Starting with the numbers 0 and 1, we obtain 
the following sequence:

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,9
87,1597, ...

But these numbers can also be defined 
combinatorially. We now show how. 

But first, we study another such problem: 
counting the compositions of the positive 
integers.

Compositions of the positive integers

A composition of a positive integer  is an 
expression for  as an ordered sum of positive 
integers; if we change the order of the 
summands, we get a different composition. 
The compositions of 3 are the following: 3; 
2 + 1; and 1 + 2; and 1 + 1 +1. Let an denote 
the number of compositions of n; The 
above listing tells us that a1 = 1 and a2 = 1 

1. We may generate more values through 
experimentation.

Problem: Find a formula for an .

n Compositions of n an

1 1 1
2 2; 1 + 1 2
3 3; 2 + 1; 1 + 2; 1 + 1 + 1 4

4 4; 3+1; 1+3; 2+2; 2+1+1; 
1+2+1; 1+1+2; 1+1+1+1 8

5

5; 4+1; 1+4; 3+2; 2+3; 
3+1+1; 1+3+1;1+1+3;2+2+
1;2+1+2;1+2+2;2+1+1+1; 

1+2+1; 1+1+2+1; ;1+1+1+2; 
1+1+1+1

16

Examine the third column. What a lovely 
pattern! It invites us to find an equally lovely 
proof.

Conjecture:an = 2n–1 .

A proof using recursion

Observe that there is just one composition of 
having only one summand, namely: n itself. 
Let us set this composition aside and focus 
on the compositions with more than one 
summand.

Take any composition with more than one 
summand; let its first term be k, where 1 < k 
<  n – 1. So:

Here, note that the bracketed term (a+b+c+ 
...) forms a composition of n – k. If we keep 
the first term fixed at k, we can complete the 
composition with any composition of n–k. It 
follows that there are an–k compositions in 
which the first term is k.

Now, sum this result over all values of k. 
Bringing back the composition with a single 
summand, we see that

4_Shailesh shirali.indd   334_Shailesh shirali.indd   33 24-Jun-24   2:56:29 PM24-Jun-24   2:56:29 PM



School Science   Quarterly Journal  June–September 2023

34 

an = 1 + a1 + a2 + ...+ an–2 + an–1

Replacing n by n–1, we get

an = 1 + a1 + a2 + ...+ an–3 + an–2

Examining these two relations, we conclude 
that an =  an–1 + an–1 i.e,

  an = 2an–1

It follows that a1, a2, a3 is a doubling 
sequence! Since a1 = 1 = 2° we conclude that 
an = 2n–1. We have proved the conjecture.

Mathematics of Poetry

In poetry, the term prosody refers to ‘rhythm, 
intonation and speech’. We now study a 
problem whose origins lie in prosody. It 
was first studied by grammarians such as 
Pingala, in the second century BCE, and 
mathematicians such as Virahanka (700 CE), 
Gopala (1135 CE), and Hemachandra (1150 
CE).

We start by classifying the syllables of the 
language into two categories: light and heavy. 
Light syllables (L) have weight 1, while heavy 
syllables (H) have weight 2. Words can be 
formed using both kinds of syllables.
There is clearly just one word possible with 
weight 1, namely: S. And there are just two 
words possible with weight 2: H and LL. The 
situation invites us to formulate the following 
problem:

Problem. Find the number of words with total 
weight n.
Let this number be cn. Like earlier, 
we generate the relevant data by 

experimentation:

n Words with total weight 
n

Cn

1 L 1

2 H;LL 2

3 HL; LH; LLL 3

4 HH; HLL; LHL; LLH; LLL 5

5 HHL; HLH; LHH; HLLL; 
LHLL; LLHL; LLLH; LLLLL

8

6 HHH; HHLL; HLLH; HLHL; 
LHHL; LLHH; LHLH; HLLL; 

LLHLL

13

Here is a table of values of cn:

n 1 2 3 4 5 6

Cn 1 2 3 5 8 13

Observation: c1, c2 , c3 is a (displaced) 
Fibonacci sequence!
But how do the Fibonacci numbers enter the 
topic of prosody? It turns out that we can use 
an argument exactly like the one we used to 
count compositions.

• Consider all words with total weight  
where n > 2. 

• Each of these must end L or H. Delete 
the last syllable from each word.

• If the deleted letter is L, then the 
reduced word has weight n – 1.

• If the deleted letter is H, then the 
reduced word has weight n – 2.

• In each case, complete families are 
obtained. 
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For example, n = 5. As the above table 
indicates, there are 8 words with total 
weight 5:

HHL; HLH; LHH; HLLL; LHLL; LLHL; LLLH; LLLLL

On deleting the last syllable of each word 
and separating the remaining words into two 
classes, depending upon whether the deleted 
letter was L or H, we obtain the following 
picture:

HH; HLL; LHL; LLH; LLL HL; LH; LLL

Words where the 
deleted letter was 
L. All these words 
have total weight 4. 
There are five words 
in this collection, 
corresponding to  
c4 = 5.

Words where the 
deleted letter was 
H. All these words 
have total weight 3. 
There are three words 
in this collection, 
corresponding to  
c3 = 3.

It is easy to see from the argument developed 
above that c5 must be equal to c4 + c3.

Though we have sketched the argument for 
the case n = 5, the argument is perfectly 
general, and it proves that

cn = cn–1  + cn–2  for all n > 2

In other words, the -sequence follows the 
Fibonacci recurrence.

At the same time, c1 = 1 and c2 = 2. So, the 
-sequence starts with a pair of consecutive 
Fibonacci numbers.

These conditions suffice to imply that every 
c-number is a Fibonacci number. It follows 
that the -sequence is a displaced Fibonacci 
sequence. Indeed, cn  = Fn+1 where Fk denotes 
the k-th Fibonacci number.

Comment: The Fibonacci numbers are 
also known as the Virahanka-Gopala-
Hemachandra numbers, because the Indian 

mathematicians Virahanka, Gopala and 
Hemachandra discovered them much before 
Fibonacci. But they discovered these numbers 
using combinatorial reasoning.  See [5].

Pedagogical Notes

Students going through this exploration, 
experience many things that are important 
from a pedagogical perspective:

• Generating a sequence empirically.

• Organising data systematically and 
efficiently.

• Spotting patterns in data and 
formulating a suitable conjecture.

• Proving the conjecture using recursion. 
Or disproving it by checking with more 
data.

• Formulating variations of the same 
basic problem.

Aryabhata and the Jug Problem

In the 5th century Aryabhata described 
an algorithm to solve linear Diophantine 
equations in a single variable. (The word 
‘Diophantine’ tells us that we are interested 
only in integer solutions). He called this the 
kuttaka or the ‘pulveriser.’ See [6] for details.

Fig.11: displays the relevant verse from 
Aryabhata’s famous text.

Fig. 11: A verse from Aryabhatiya. Source: [6]
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On examination we find that the algorithm is 
largely like Euclid’s division algorithm for the 
determination of the greatest common divisor 
(GCD) of two given positive integers. Euclid’s 
algorithm may be described as follows. Given 
two positive integers a,b where a > b, we 
replace the ordered pair (a,b) by

      (b,r)

where  is the remainder a ÷ b. Since r < 
b, the numbers in the new pair are strictly 
smaller than those in the original pair. We 
now iterate this operation till it concludes 
(which it must). A ryabhata’s algorithm is 
similar but uses subtraction rather than 
division. Its purpose is more general. Given 
two positive integers with GCD g, it seeks to 
find a pair of integers x, y such that

                ax + by = g.

Note that if (x,y) = (u,v) is a solution then so 
is (x,y) = (u – nb, v + na) for any integer. The 
algorithm yields an algorithmic proof to the 
following theorem:

Given two positive integers a,b with GCD g, 
integers x,y can be found such that ax + by = 
g. If a, b are co-prime then integers x,y can 
be found such that ax + by = 1.

Our focus now will not be to dwell on the 
algorithm as such but to show an entertaining 
and unexpected connection between the 

solution offered by Aryabhata’s algorithm 
and a well-known puzzle involving jugs and 
tumblers and a tank of water. Movie buffs will 
be interested to know that this puzzle played a 
part in one of the Die-Hard movies!

The puzzle may be stated as follows. Say we 
are given two cups with capacities a litres and 
b litres, and a tank with a large amount of 
water. Here, a, b are given positive integers. 
Using these two cups we must, through a 
series of exchanges (i.e., filling the cups and 
emptying them) end up with exactly 1 litre in 
one cup. Estimation is not permitted; we are 
not allowed to fill up or empty either cup by 
some fractional amount. The desired result 
is achievable if and only if a,b are coprime. 
Given that this condition holds, we now show 
how the kuttaka algorithm can indicate the 
steps needed. We start by finding a pair of 
integers  such that au + bv = 1. The actions 
to be performed are now dictated by the 
values of u,v.

Example

Suppose that (a,b) = (7,5). These are co-prime 
integers. We easily verify that with (u,v) = (-2,3) 
we get au + bv (i.e., ((-2) × 7) + (3 × 5) = 1. This 
tells us that the 5-litre cup needs to be filled 
up 3 times, and the 7-litre cup needs to be 
emptied 2 times. The actions to be performed 
are the following:

Step Action to be performed Amount in 5-litre 
cup Amount in 7-litre cup

1 Fill the 5-litre cup from the tank 5 0

2 Empty contents of 5-litre cup into 7-litre cup 0 5

3 Fill the 5-litre cup from the tank 5 5

4 Empty contents of 5-litre cup into 7-litre cup 3 7
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5 Empty contents of 7-litre cup into the tank 3 0

6 Empty contents of 5-litre cup into 7-litre cup 0 3

7 Fill the 5-litre cup from the tank 5 3

8 Empty contents of 5-litre cup into 7-litre cup 1 7

9 Empty contents of 7-litre cup into the tank 1 0

Observe the following:

The 5-litre cup has been filled from the tank 
on three occasions: steps 1, 3, and 7.

The 7-litre cup has been emptied into the tank 
on two occasions: steps 5 and 9.

The figures agree with the relation ((-2) × 
7) + (3 × 5). (The result may be achieved in 
different ways; the above sequence of actions 
is not the only one possible).

Before closing, we remark that Aryabhata’s 
interest in solving linear indeterminate 
Diophantine equations come from astronomy: 
the problem of finding instances of occultation 
among the planetary bodies. This is of interest 
to astronomers and astrologers alike!

Brahmagupta Triangles

Consider a triangle with sides 3,4,5. Observe 
that: 

Its sides are consecutive positive integers. 

It has integer area; for, it is right-angled (with 
legs 3,4), so its area is 16×17

2  = 6.

A triangle having all these specifications 
is called a Brahmagupta Triangle. If we 
only insist that the sides are integers (not 
necessarily consecutive integers), then the 
triangle is called a Heron Triangle.

Is it possible for us to find all possible 
Brahmagupta triangles? Are there infinitely 
many of them? 

In the 7th century CE, Brahmagupta found 
many such triangles, with sides (3,4,5), 
(13,14,15), (51,52,53), (193,194,195), … Looking 
carefully at his working, it seems clear that 
he knew how to generate infinitely many 
solutions to the problem. Let us see if we can 
unravel his approach.

Consider a triangle with sides a –1, a, a, 
where a > 3 is a positive integer. Its semi-
perimeter is 3a

2
, so its area b is given by

b2 = 3a
2  ( a

2  –1) a
2  + 1) 

Hence:

  16b2 = a2 . 3(a2–4) 

Since 16b2 and a2 are perfect squares, 3(a2–4) 
is a perfect square as well, implying that
  a2–4 = 3c2

for some integer . Therefore, to enumerate 
Brahmagupta triangles, we need to solve the 
equation
  a2– 3c2 = 4

over the set of positive integers. To get 
a sense of the family of solutions of this 
equation, let us generate some solutions 
using computer software:

n 1 2 3 4 5 ...

an 4 14 52 194 724 ...

cn 2 8 30 112 418  
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We immediately spot a striking pattern: 
both sequences show an identical two-term 
recurrence. Namely:

 an= 4an-1 – an-2

 cn= 4cn-1 – cn-2

Only the initial terms are different: a1 = 4, a2 = 
14, while c1 = 2, c2 = 8. 

It is easy to show, using the principle 
of induction, that if the following are 
Brahmagupta triangles,

 (an-2 –1, an-1, an-2 + 1),

 (an-1 – 1, an-1, an-1 + 1),

then so is an –1, an,an+1 where  is given by the 
recurrence relation shown above.

How do we explain this recurrence relation? 
To do so, we need to look more closely at the 
equation.

Analysis of the equation a2 – 3c2 = 4

If c is odd, then c2 is of the form 1 (mod 
4) which leads to a2 ≡ 3 (mod 4). But no 
perfect square is of the form 3 (mod 4). As 
this possibility does not work out, c is even. 
Therefore, a too is even. Let a = 2x and 
c = 2y where x, y  are positive integers. 
Substituting in the above equation and 
simplifying the expressions, we get

 x2 – 3y2 = 1

This is an instance of a Brahmagupta-
Pell equation. Such equations were first 
studied by Brahmagupta in the 7th century. 
Much later they were studied by European 
mathematicians such as Fermat and Euler 
(who mistakenly attributed some results to a 

British mathematician named Pell; the name 
has stuck ever since).

The ‘Bhavana’ Operation

Brahmagupta discovered an extraordinary 
‘law of composition’ governing the set of 
solutions of such equations. He found that if 
(a,b) and (c,d) are solutions of x2 – 3y2 = 1, then 
so is the pair (ac + 3bd, ad + bc). We may 
thus write:

 (a,b) ⊗ (c,d) = (ac + 3bd, ad +bc) 

He named this operation Bhavana. A law of 
composition of this kind is familiar to us from 
a modern standpoint. But Brahmagupta was 
the first mathematician to study such ways 
of composing elements of a set. Using this 
law, he was able to generate any number of 
solutions to the given equation!

Examples of Bhavana

Let us compose the solution (2, 1) with itself. 
We get: 

(2, 1) ⊗ (2, 1) = (4 + 3, 2 + 2) = (7, 4).

Recalling that a = 2x and c = 2y, we get the 
Brahmagupta triangle (13, 14, 15).

Let us compose the solutions (7,4) and (2,1); 
we get: 

(7, 4) ⊗ (2, 1) = (14 + 12, 7 + 8) = (26 ,15).

From this solution we get the Brahmagupta 
triangle (51, 52, 53) .

It is easy to see once we have the law of 
composition in our possession, that we can 
generate infinitely many solutions to the given 
equation.
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A Jewel of Ancient Indian 
Mathematics

Brahmagupta’s law of composition is one of 
the jewels of ancient Indian mathematics. 
In later centuries, the idea was developed 
further by Bhaskara II (who wrote the Lilavati). 
And in recent years, Manjul Bhargava has 
published some beautiful results related to 
the Bhavana.

In conclusion, we ask …

What is the value of studying topics from our 
ancient past? Does it have any significance?

To answer that, we quote a famous poem 
from John Keats.

A thing of beauty is a joy for ever:

Its loveliness increases; it will never

Pass into nothingness …

That brings me to the end of the talk. I have 
shared with you some gems from ancient 
Indian mathematics.  I hope we have been 
able to experience their beauty together!

Declaration

The author affirms that there has been no 
conflict of interest in the writing of this paper.

4_Shailesh shirali.indd   394_Shailesh shirali.indd   39 24-Jun-24   2:56:29 PM24-Jun-24   2:56:29 PM


	4_Shailesh shirali_new

