EFFECT ON THE VOLUME OF SOLVENTS AFTER DISSOLUTION OF SOLUTES

Renu Parashar

Associate Professor Department of Chemistry, Hansraj College, University of Delhi,

R.K. Parashar

Department of Education in Science and Mathematics, NCERT, New Delhi

The present paper deals with the change in volume of the solvent when a solid solute is dissolved into it. The results are presented with respect to the change of volume of solvent, the total volume of solvent and solute, and in terms of the molar concentration of solutions. Keywords: Solute, solvent. Solution, solvation, volume change, molar concentration

Keywords: Solute, solvent. Solution, solvation, volume change, molar concentration

Introduction

School Science Curriculum starts from the grouping of classifying objects on the various criteria at the middle stage. Solubility is one of the important criteria to group different materials into soluble and insoluble substances. The idea about the extent of dissolution of substances in water and formation of the saturated solution is also been discussed at this stage [NCERT 2006 A] When learner moves to the secondary stage particulate nature has been explained to them stating that in the liquids some spaces (intermolecular spaces) are available in which salt/sugar particles occupy the space when it is dissolved in them [NCERT 2006 B]. It also goes into the minds of students up to the secondary stage that when a pinch of a spoon

of salt/sugar is added to a glass full of water, its volume does not change and the solute (salt/sugar) occupies the intermolecular spaces in the water so that there is no change in the volume. To make these things clearer efforts are made to explain that there will be a change of volume of solvent on dissolving solute into it.

Methodology

The data of densities of solid salt/ organic compounds and their 20 per cent w/w aqueous solutions were taken from the Chemical Engineer's Handbook [Mc Graw Hill 2008]. With the help of these data volume of the 20g of solid solute and volume of 80g water has been computed and presented in the Table-1.

Volume of 20% Aqueous Solution (mL)	87.311	88.439	87.497	94.634	92.541	96.451	90.736	83.928	82.740	84.048	89.654	92.507	94.967	
Density of 20% Aqueous Solution g/mL	1.14533	1.13072	1.14290	1.05670	1.08060	1.03680	1.10210	1.19150	1.20860	1.18980	1.11540	1.08100	1.05300	
Volume of the Water (mL)	80.237	80.237	80.144	80.144	80.144	80.144	80.144	80.144	80.350	80.144	80.144	80.144	80.144	
Density of Water	0.9970470	0.9970470	0.9982067	0.9982067	0.9982067	0.9982067	0.9982067	0.9982067	0.9956488	0.9982067	0.9982067	0.9982067	0.9982067	
Temperature °C	25	25	20	20	20	20	20	20	30	20	20	20	20	
											×			
Amount of of Solvent (water) [g]	80	80	80	80	80	80	80	80	80	80	80	80	80	
	9.259 80	10.101 80	8.849 80	13.158 80	11.628 80	17.094 80	13.072 80	7.519 80	7.870 80	8.230 80	11.299 80	12.903 80	15.151 80	
Amount of Solvent [water] [g]														
Volume Amount of the of Solute Solvent (mL) (water) (g)	9.259	10.101	8.849	13.158	11.628	17.094	13.072	7.519	7.870	8.230	11.299	12.903	15.151	
 Amount Volume Amount of the of Solute Solute Solute Solvent (g) 	20 9.259	20 10.101	20 8.849	20 13.158	20 11.628	20 17.094	20 13.072	20 7.519	20 7.870	20 8.230	20 11.299	20 12.903	20 15.151	

Table 1: Basic data of densities and volumes of solute and solvent at the given temperature

increase in the volume of solvent after the dissolution of solid solute is presented. An increase percentage in volume of Now with the help of the calculated volume of solvent (Water) and the Volume of the 20% w/w aqueous solution, an solvent has also been computed and presented in Table 2

School Science Quarterly Journal December 2017

S.No.	Name of Solute	Volume of Solvent (water) mL	olvent (water) Aqueous		% Increase in Volume
		А	В	C = (B–A)	
	NaCl	80.237	87.311	7.074	8.82
	KCl	80.237	88.439	8.152	10.16
	NaN03	80.144	87.497	7.353	9.17
	NH4Cl	80.144	94.634	14.490	18.08
	NH4NO3	80.144	92.541	12.397	15.47
	CH3COONH4	80.144	96.451	16.307	20.35
	CH3C00Na	80.144	90.736	10592	13.22
	Na2SO4	80.144	83.928	3.784	4.72
	Na2CO3	80.350	82.740	2.390	2.97
	K2C03	80.144	84.048	3.904	4.87
	(NH4)2SO4	80.144	89.654	9.510	11.87
	Sucrose	80.144	92.507	12.363	15.42
	Urea	80.144	94.967	14.823	18.49

Table 2: Change in Volume after the dissolution of solute with reference to the solvent volume

Efforts have also been to calculate the change in volume of the solution with reference to a total volume that includes the volume of solid solute and of liquid solvent. Calculated data is presented in Table 3.

Table 3: Change in volume of the solution with reference to total volume of the mixture

S. No.	Name of Solute	Volume of the Solid solute (mL)	Volume of the water (mL)	Total volume of mixture before recitation (mL)	Volume of the Aqueous Solution (mL)	Change in Volume (mL)	Change in vol. in %
				А	В	C = (B – A)	
	NaCl	9.253	80.237	89.996	87.311	- 2.187	- 2.44
	KCI	10.101	80.237	90.338	88.439	- 1.899	- 2.10

NaN03	8.849	80.144	88.993	87.497	- 1.496	- 1.68
NH4Cl	13.158	80.144	93.302	94.634	+ 1.332	+1.43
NH4NO3	11.628	80.144	91.772	92.541	+ 0.769	+ 0.84
CH3COONH4	17.094	80.144	97.238	96.451	- 0.787	- 0.81
CH3COONa	13.072	80.144	93.216	90.736	- 2.48	- 2.66
Na2SO4	7.519	80.144	87.663	83.928	- 3.735	- 4.26
Na2CO3	7.870	80.350	88.220	82.740	- 5.480	- 6.21
K2C03	8.230	80.144	88.374	84.048	- 4.326	- 4.89
(NH4)2 SO4	11.299	80.144	91.443	89.654	- 1.789	- 1.96
Sucrose	12.903	80.144	93.047	92.507	- 0.540	- 0.58
Urea	15.151	80.144	95.295	94.967	- 0.328	- 0.35

School Science Quarterly Journal December 2017

In order to have clear picture on the basis of molar concentration, the calculations were also made to find out the percentage change in volume with respect to volume of solvent and total volume of mixture of solute and solvent. The calculated values are presented in Table-4.

Table 4: Change in volume	with reference to	molar concentra	ation (0.001M)

S. No.	Name of Solute	Mass of Solute taken (g)	Formula/ Molar Mass solute g/mol	Molar Amount	% change in vol. wrt volume of mixture per mili mole (0.001M) of solute	% increase in vol. wrt volume of solvent per mili mole (0.001M) of solute
1.	NaCl	20	58.44	0.342	0.71 (–)	2.58
2.	KCI	20	74.55	0.268	0.78 (–)	3.79
3.	NaN03	20	84.99	0.235	0.71 (–)	3.90
4.	NH4Cl	20	53.49	0.374	0.38 (+)	4.83
5.	NH4CO3	20	96.09	0.208	0.40 (+)	8.69
6.	CH3COONH4	20	77.08	0.259	0.31 (–)	5.97
7.	CH3C00Na	20	82.03	0.244	0.11 (–)	8.34
8.	Na2SO4	20	142.04	0.141	3.02 (–)	2.63
9.	Na2CO3	20	105.98	0.189	3.28 (–)	2.50
10.	K ₂ CO ₃	20	138.20	0.145	3.37 (-)	2.05

11.	$(\mathrm{NH}_4)_2 \mathrm{SO}_4$	20	132.14	0.151	1.30 (-)	3.22
12.	Sucrose	20	342.30	0.058	1.00 (-)	20.46
13.	Urea	20	60.60	0.330	0.11 (-)	05.60

Result and Discussion

Data presented in Tables 1 and 2 show that the all the solutes under the study whether ionic or non-ionic, increase the volume of solvent on dissolving 20 per cent by mass of it. The highest increase is observed in the case of CH₂COONH, and lowest in the case of Na₂CO₂. This indicates that the solute particles (ions or molecules) do not fit completely in the intermolecular spaces present in the solvent (water). The amount of increase in volume of solvent on dissolving any solute depends on solute-solvent interaction, the size of ions/ molecules, charge, hydration of solute particles [Pederson and Hvidt Aase, 1985] percent increase in volume data of NaCl, KCl, Na₂CO₃ and K₂CO₃ and K₂CO₃ solutes clearly indicate that the size of K⁺ is more than Na⁺ ions. Similarly, data of Na₂SO₄ and Na₂CO₃ shows that size of SO_4^{2-} ion is larger than CO_3^{2-} ion. These inferences are of pedagogical importance that in some cases learners can be given exercises to compare the cationic or anion sizes by measuring and comparing the volumes of their appropriate salts.

In Table 3 data presents the change in volume with reference to the total volume of mixture (solute solvent). All the solutes under study show decrease in volume except NH₂Cl and

NH, NO₃ where the volume increase by 1.43 per cent and 0.84 per cent respectively. The observations from Tables 1, 2 and 3 show that all the cations, anions and organic molecules increase the volume of solvent and decrease the volume with respect to total volume of mixture of solute and solvent except NH⁺₄ ions. It means most the ions and organic molecules have tendency to decrease the volume of mixture of solute and solvents that may be termed as shrinkage effect. In case of NH₄Cl and NH₄NO₃, the increase in volume of solution in observed with respect to total volume of solute and solvent. This swelling effect may be due to bifurcated hydrogen bonding formed by NH⁺₄ ion in the solution [Guo J et al, 2018 and Hollas D et al, 2017] similar to the hydrogen bond formation in water when it is converted into ice leading to swell in volume of system. However, in case of CH₃COONH₄ and (NH₄)₂SO₄ there is decrease in volume. This observation indicates that shrinkage effect of CH₂COO⁻ and ions predominate over the swelling effect of ions in these salt solutions.

Conclusion

It may be concluded that on dissolving most of the solute decreases the volume of solutions with respect to the total volume of solute and solvent. Some ammonium salts show opposite effect.

School Science Quarterly Journal December 2017

References

GUA J,ZHOU L,ZEN A, MICHELIDES A,WU Z,WAND E,XU L, CHEN J, 2020, Hydration of in water: Bifurcated Hydrogen Boding Structures and Fast Rotations Dynamics, Physical Review Letters, Vol. 125, page 106001

HOLLAS D, POHLM N, SEIDEL EIDEL R, AZIZ E F, SLAVICEK P, WINTER B, 2017, Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window, Scientific Reports Vol. 7, 2017, Article No. 756.

NCERT, Science, Textbook for Class VI, NCERT, 2006 A page 29

NCERT, SCIENCE, TEXTBOOK FOR CLASS IX, NCERT, 2006 B page 29

PADERSEN T G, and HVIDT A, 1985, Volumetric effects due to ion-solvent interaction in aqueous electrolyte solutions ,Carlberg Res commun. Vol. 50 p.193-198

PRERRY' CHRMICAL ENGINEER'S HANBBOK, 2008, 8th edition, McGraw Hill, New York.